
Virtual Domain Controller Cloning in Windows Server 2012

Tom Moser [MSFT]

1 Oct 2012 5:00 AM

Tom Moser here with a post on one of the new ADDS features in Windows Server 2012; Virtual

Domain Controller Cloning.

Until now, cloning, snapshotting, copying, or pretty much doing anything but rebuilding from

scratch to a virtual domain controller wasn't just unsupported; it had the potential to be really bad

for your directory. Cloning or restoring snapshots of DCs could result in USN rollbacks or

lingering objects, just to name a couple of problems.

Starting in Windows Server 2012, we now support DC cloning as well as snapshot restoration of

domain controllers. With the RTM bits available, I found myself rebuilding my lab and took the

opportunity to document the process to demonstrate just how easy it is to clone virtual domain

controllers with Windows Server 2012.

Requirements

There are a few base infrastructure requirements to take advantage of DC cloning.

 The hypervisor must support VM-GenerationID. Hyper-V running on Windows Server

2012 supports this feature. Other virtualization vendors will have the ability to implement

this as well, so check with your vendor to see if it's supported.

 The source virtual DC must be running Windows Server 2012.

 The PDC emulator role holder must be online and available to the cloned DC and must

be running Windows Server 2012.

There are a few other steps and requirements and I'll take you through those now.

Cloneable Domain Controllers Group

There's a new group in town. It's called Cloneable Domain Controllers and you can find it in

the Users container. Membership in this group dictates whether a DC can or cannot be cloned.

This group has some permissions set on the domain head that should not be removed. Removing

these permissions will cause cloning to fail. Also, as a best practice, DCs shouldn't be added to

the group until you plan to clone and DCs should be removed from the group once cloning is

complete. Cloned DCs will also end up in the Cloneable Domain Controllers group. Make

sure to remove those as well.

http://social.technet.microsoft.com/profile/Tom%20Moser%20%5bMSFT%5d
http://support.microsoft.com/kb/875495

In the case of my lab, I planned to build out a whole bunch of Server Core DCs. I built a single

DC running the GUI-enabled version of Server, then built a DC running Server Core. This DC,

DC02, will be my source domain controller.

The first step in the cloning process is to add the source DC to the Cloneable Domain Controllers

group. Here, I've used the latest version of Active Directory Administrative Center to add my DC

to the group. Make sure to select "Computers" under Object Type in the object picker when

adding the DC. Here, I verified that the group now contains my source DC, DC02. (Figure 1).

We're almost there. No kidding. Next, we need to create the config file.

DCCloneConfig.xml

There's one key difference between a cloned DC and a DC that is being restored to a previous

snapshot: DCCloneConfig.XML.

DCCloneConfig.xml is an XML configuration file that contains all of the settings the cloned DC

will take when it boots. This includes network settings, DNS, WINS, AD site name, new DC

name and more. This file can be generated in a few different ways.

 The New-ADDCCloneConfig cmdlet in PowerShell

 By hand with an XML editor

 By editing an existing config file, again with an XML editor (Notepad is not an XML

editor.)

In my lab, I used the PowerShell cmdlet to generate the config. This is an easy, safe way to

generate the file and ensures there won't be any issues during cloning.

On your Windows Server 2012 domain controller, fire up PowerShell. From there, take a minute

to run Get-Help New-ADDCCloneConfig –Full and review the help page.

Now that you've thoroughly reviewed the help page, let's go through the steps. On DC02, I ran

the following:

New-ADDCCloneConfigFile -IPv4Address 10.2.1.10 -IPv4DefaultGateway 10.2.1.1 -
IPv4SubnetMask 255.255.255.0 -IPv4DNSResolver 10.1.1.10,10.1.1.11 -Static -SiteName
CORPDR

This cmdlet will generate a config XML using the specified parameters, in this case IP

information, AD site to use, and that it's a static IP configuration. The IP information provided to

the cmdlet will be used by the new cloned domain controller when it begins cloning.

The cmdlet is going to do a few things prior to generating the configuration XML file. First, it's

going to verify that the PDC is available and running Windows Server 2012 or later (one of the

pre-reqs above). This check can be skipped by specifying the –Offline switch. You should only

need to do this if a global catalog isn't available. Second, it's going to verify that the source DC

(where you're running the cmdlet) is a member of the Cloneable Domain Controllers group.

Finally, the cmdlet is going to check the DC for applications that may not support cloning. If any

applications or services are detected (such as DHCP), generation of the config will fail. You'll

see something like Figure 2 (below).

Figure 2 - Failed Clone Config Generation

http://support.microsoft.com/kb/2745013

The cmdlet warning text is pretty helpful. It tells us that applications were found that are not on

the allowed list. What's on the allowed list? Good question. You can find it at

C:\Windows\System32\DefaultDCCloneAllowList.xml. This list exists by default on Windows

Server 2012 domain controllers and should not be modified. If you want to add a discovered

application to the list, you'll need to generate a custom DC allow list.

Prior to generating the custom allow list, you'll want to review what applications actually caused

the warning. Running Get-ADDCCloningExcludedApplicationList (tab complete is your buddy

here) will show you that list. This cmdlet will dump out all of the services that were discovered

while trying to generate the DCCloneConfig.XML (Figure 3). From here, you can make a

decision; remove the discovered application or service or add the application to the custom allow

list. Generally speaking, if it's a Microsoft service that has been flagged, as DHCP has been

flagged in this example, you should not clone it. If a third party application is discovered and

you've verified with the vendor that cloning is supported, then you can jump to Figure 4.

You've verified with the application vendor that the service is OK to clone. Generating the allow

list is easy. Run Get-ADDCCloningExcludedApplicationList again, but specify the –

GenerateXML switch.

The cmdlet generates the XML and writes it out to c:\windows\ntds, as the output shows.

Viewing the contents in notepad shows this (Figure 5):

Figure 5 - Or you should just remove DHCP...

And that's what the custom allow list looks like. Again, you could use an XML editor to modify

this, but should probably remove the application unless you have a specific reason to create a

clone of the service and you've verified that the application supports cloning. Once you've

generated the XML file, you can run New-ADDCCloneConfigFile again and it'll successfully

generate your config. In my case, I used Remove-WindowsFeature and removed DHCP from my

DC. Figure 6 shows the PowerShell commands for both removing DHCP as well as successfully

generating my DCCloneConfig.

Figure 6 - That's a lot of green, so I think it's OK.

As the output shows, the XML file is written to c:\windows\ntds. That's one of three valid

locations where the file can be placed for cloning. All three locations are:

 %windir%\NTDS

 Wherever the DIT lives (if you've changed the path to D:\NTDS, for example)

 The root of any removable media

The config file should have been written out to c:\windows\ntds. Viewing the content with Get-

Content in PowerShell shows us what the config looks like (Figure 7). If you're familiar with

XML-based configuration files, this should look pretty typical.

Now I've got the config file, I've removed the unsupported service and I'm ready to start the

cloning process.

Copying the Source DC

The last step now is to export the source virtual machine. This can be accomplished via

PowerShell or the Hyper-V management console.

First, turn off the source DC then export the VM. I used PowerShell (Figure 8). Milt0rDC02 is

the name I used in Hyper-V for DC02.

Now that I've exported the source DC, I need to import the VM. In PowerShell, I navigate to the

path were I exported the VM and to the Virtual Machines subdirectory. There, I run Import-VM

and store the result in a variable called $clonedVM. Milt0rDC03 is the name in Hyper-V I'll use

for this new domain controller.

 $clonedVM = Import-VM –Path <VM XML Path>.xml –Copy –GenerateNewId –
VhdDestinationPath G:\VHDs\Milt0rDC03

With the Import-VM cmdlet (Figure 9), I specify the path to the VM XML file and use the –

Copy and –GenerateNewId switches. The copy switch is going to leave my original export intact

and the GenerateNewId switch will generate a VM ID that differs from the ID of the originally

exported machine. I also had to specify a different VHD path using –VhdDestinationPath. This

path is the directory where the VHD will be copied to. The VHD will import using the same

name as the VHD from the export. In my case, this was Milt0rDC02.vhdx. The copied VHD

will import to G:\VHDs\Milt0rDC03\Milt0rDC02.vhdx. These can be renamed and the VM

reconfigured after the import is complete. You could also simply create a copy of the VHD,

rename it, create a new VM, then attach the VHD to the new VM.

Once that completes, I'm able to quickly rename the VM (as it will retain the name of the

originally exported VM) by using the Rename-VM cmdlet (see Figure 9).

That's it. From here, it's just a matter of turning on the DC and letting everything happen on its

own.

Cloning

If you've made it this far in the post, you're probably thinking "this seems pretty long and drawn

out." Sure, I'm pretty long-winded, but we've actually only done two things here: Create a clone

config file (which is fast, assuming you don't have any apps that aren't allowed) and create a

copy of the source DC. Now we can power on the copied DC, our clone, and the rest should take

care of itself.

I fire up the VM and after a minute or so of "Completing installation" I see this screen (Figure

10).

A few minutes of this and the DC will reboot. When it's up, you should see a new DC in the

Domain Controllers OU and logging in to the DC should indicate that you're in normal mode and

not DSRM. Now you'll want to take some time to verify that both NTDS and SYSVOL

replication are working properly and that everything is responding as expected. If it checks out,

you've successfully cloned your virtual domain controller.

VM-GenerationID

At the beginning of the post, I mentioned that the hypervisor must support VM-GenerationID.

VM-GenerationID is a property that is exposed to the VM via the virtualization drivers and is

unique to that virtual machine. Each Windows Server 2012 domain controller stores its own

VM-GenerationID in a property called msDS-GenerationId on the DC's computer object. This

value does not replicate. If you try to view the value of msDS-GenerationId from another DC,

you'll see that the value shows up as not set.

Figure 11, below, shows the value on DC02-CL0001. I had to connect directly to that DC in

ADUC to see the value.

Each time a Windows Server 2012 domain controller boots, it compares the VM-GenerationID

presented by the hypervisor to the value it has stored in the DIT. If they match, it boots normally.

If they don't match, this indicates that the DC is a restored snapshot or a clone.

How does it determine if the VM is a restored snapshot or a clone?

Remember that DCCloneConfig.xml we created earlier? When the VM-GenerationID mismatch

is detected, the next step is to check for that configuration file. If it exists, the cloning process

starts. If that file doesn't exist, it's assumed that this is a restored snapshot and the restore process

starts.

After, there's a bunch of "stuff" that happens which, for the sake of brevity, I'll cover in another

post. The DC reads the config, modifies the domain controller configuration based on the

settings in the DCCloneConfig.xml, and attempts to complete the cloning process. Here's where

you might run in to issues, especially if you cheated and just dropped a config on another server

without running the New-ADDCCloneConfig cmdlet. Some problems you might run in to are:

 PDC is unavailable or not running Server 2012. I actually ran in to this because I

neglected to change my virtual switch in Hyper-V.

 You thought you were being sneaky and dropped a config file on to a clone source VHD

with apps that are not in the default allowed list, without adding a custom allow list. This

is checked during cloning and will cause the clone to fail.

 A duplicate IP is detected.

In each of those cases, the clone will fail and the DC will boot to Directory Services Restore

Mode. Logging on to the DC and viewing the DCPromo.log file in C:\Windows\Debug should

give you some hints on why it failed.

Assuming you didn't run in to any of those issues and your DC clone completed successfully,

you're all done! If you didn't specify the –CloneComputerName parameter when you ran New-

ADDCCloneConfig (which I intentionally left out), the DC will boot using a generated name. If

you do specify that parameter, the given name will be used for the new domain controller. In the

screenshot above (Figure 11), you can see that my DC is called DC02-CL0001. The source DC

was called DC02. The cloning process will take the first eight characters of the source domain

controller's name then append –CL000X. This value will count up for each clone. Once you get

to 9999, you'll need to pick a new name to clone immediately followed by calling your TAM to

brag about having 10,000 domain controllers. Since I don't plan on continuing to clone, I decided

to rename the domain controller to DC03 and called it a day.

Wrap-up

If you've made it this far, you'll now be able to successfully clone DCs in your environment.

After each time through cloning, I mounted the exported VHD from the source VM, modified

the DCCloneConfig.xml file, and created another copy of the VM. This process enabled me to

very quickly create four copies of my original Server Core DC. I'll demo that in a future post.

I hope this post gives you an understanding of virtual domain controller cloning and the steps

involved to make it work. In a near-future post, I'll cover the process with a little more depth as

well as troubleshooting and safe restore. Thanks for reading!

-Tom Moser

